If it's not what You are looking for type in the equation solver your own equation and let us solve it.
125x^2+180x-729=0
a = 125; b = 180; c = -729;
Δ = b2-4ac
Δ = 1802-4·125·(-729)
Δ = 396900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{396900}=630$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(180)-630}{2*125}=\frac{-810}{250} =-3+6/25 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(180)+630}{2*125}=\frac{450}{250} =1+4/5 $
| 8y+7=2y-10 | | -45=14y-6y | | 3234x=(247892573/214324) | | X-y=221824000 | | x+3*2=-12(x+2) | | 1×x=9/11 | | 4x/3-7=-69x | | s/12-20=-17.5 | | r/4-7=-5 | | m/3+13=22 | | l/2+2=6 | | 5i-8=52 | | 1.5=3x-15/x | | 7x-80=180 | | X+1/5x=2 | | 5x-7/2x=3 | | 7^2-x^2=56 | | (x-9)^2+3x-7=0 | | 8x(3x-5)=5 | | 5(x-4)+2x=6(x-3) | | 8x-7=-4(7x+4=-5) | | 16+42÷x=22 | | 6m=3/7=3m+1/7 | | M2M+m-20=0 | | x^{2}+18x+70=0 | | x^2+-x+1,28=0 | | x^2+-x+1.28=0 | | 34+n=2 | | 146+753=n | | 5a-6=3a+8 | | 13+x=4x‐5 | | 2,65xX=15 |